
The Use of Object-Oriented Design Patterns

in the SAMRAI Structured AMR Framework�

Richard D. Hornungy Scott R. Kohny

Abstract

We describe the use of object-oriented design patterns in the implementation
of a
exible framework for structured adaptive mesh re�nement. We present �ve
common patterns|Smart Pointers, Singleton, Abstract Factory, Strategy, and Chain
of Responsibility|that have greatly simpli�ed software development. These design
patterns have enabled the decomposition of complex algorithms into smaller, more
manageable, decoupled components that may be reused across a variety of applications.

1 Introduction

The design and implementation of quality, high-performance numerical software frameworks
is diÆcult. Framework designers must address issues of algorithm complexity, evolving
research requirements, and software reuse within the targeted application domain. Modern
numerical algorithms, such as structured adaptive mesh re�nement methods [3, 4], consist
of many complex numerical components involving sophisticated time integration methods,
various geometry descriptions, time interpolation, spatial re�nement and coarsening, and
linear and nonlinear solvers. These numerical components interact in complex ways that
must be captured in the design of the software infrastructure. Finally, numerical frameworks
are usually developed in tandem with research projects in algorithms and applications; thus,
the framework software must be designed to evolve as computational scientists improve their
understanding of application domains and the associated numerical methods.

In this paper, we address some of these design issues in the context of a parallel
structured adaptive mesh re�nement (SAMR) framework called SAMRAI. Object-oriented
techniques and design patterns [8] have been valuable tools for the high-level organization
of the SAMRAI software architecture. They have enabled us to isolate various functional
parts of complex algorithms into di�erent framework components so that applications can
be built from smaller algorithmic \building blocks." As a result, we provide a
exible
software library that simpli�es the management of inherently complex SAMR algorithms
and is being applied to diverse SAMR applications.

This paper is organized as follows. We begin with a brief overview of SAMRAI and
the basic SAMR methodology. Section 3 describes �ve di�erent design patterns|Smart

Pointers [7], Singleton, Abstract Factory, Strategy, and Chain of Responsibility [8]|used in

�This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

National Laboratory under contract number W-7405-Eng-48. Published in the Proceedings of the SIAM

Workshop on Object-Oriented Methods for Interoperable Scienti�c and Engineering Computing, Yorktown

Heights, NY, October 21-23, 1998. LLNL report UCRL-JC-131825.
yCenter for Applied Scienti�c Computing, Lawrence Livermore National Laboratory, Livermore,

CA 94551, http://www.llnl.gov/CASC/SAMRAI, hornung@llnl.gov, skohn@llnl.gov.

1

2

the SAMRAI framework. Finally, Section 4 discusses the usefulness of design patterns and
object-oriented techniques within the SAMRAI framework and the general computational
science community.

2 The SAMRAI Framework

Structured adaptive mesh re�nement has shown great potential as a numerical simulation
methodology for a variety of applications in computational
uid dynamics [1, 2, 12], laser-
plasma interactions [6], radiation transport [11], porous media [10], and materials [9, 13, 14].
However, SAMR methods are not widely used in the scienti�c computing community. The
primary reason for this is that SAMR codes are complex and require a substantial amount of
software infrastructure to support productive application development. Fortunately, many
software components are common across diverse problem domains and may be incorporated
into a general-purpose infrastructure that supports a broad range of applications.

SAMRAI is a C++ object-oriented framework that provides computational scientists
with general and extensible software support for prototyping and developing parallel
SAMR applications. The primary goal of the SAMRAI e�ort is to explore the use of
SAMR technology in new problem domains and to develop new numerical and algorithmic
approaches for more traditional SAMR applications. SAMRAI provides an overarching
software architecture that orchestrates the various processes involved in a complex
numerical simulation. SAMR applications can usually be decomposed into smaller, simpler
constituent parts such as algorithmic components, data structures, and numerical routines.
In the process of building an application with SAMRAI, computational scientists select
the appropriate numerical and algorithm components from the framework and supply only
those operations that are speci�c to their application. Thus, the computational scientist
leverages a large simulation code base and only specializes certain components as needed.

A full description of SAMR algorithms is well beyond the scope of this paper. However,
we provide a brief overview of the basic SAMR approach to help in understanding the
algorithmic and software issues in the remainder of this paper. The SAMR approach,
introduced by Berger, Oliger, and Colella [3, 4], represents simulation data using a hierarchy
of nested levels of spatial and temporal mesh re�nement. The hierarchy dynamically adapts
to follow interesting features in the evolving simulation and focuses computer resources in
these localized regions of the computational domain.

A SAMR hierarchy consists of several mesh levels. All computational cells at a
particular level in the hierarchy represent the same mesh resolution. Each level consists of
a collection of patches, each of which is a logically rectangular collection of computational
cells. A patch contains data that represent simulation quantities in the region of the
simulation domain covered by the patch region. The level with the coarsest mesh resolution
de�nes an abstract, global integer index space. Then, each successively �ner level is
a re�nement of a portion of the next coarser index space. The organization of the
computational mesh into a hierarchy of levels of patches allows data communication and
computation to be expressed as geometrically-simple, eÆcient operations. Consequently,
the SAMRmethodology is used to construct an application code from a set of computational
tasks, each of which is expressed in terms of operations on mesh patches.

In the remainder of this paper, we discuss object-oriented techniques used to implement
two of SAMRAI's design goals. First, SAMRAI must support a wide range of complex data
structures on SAMR patches, including arbitrary user-de�ned types. Second, SAMRAI
must provide
exible and extensible algorithm support for a variety of SAMR applications.

3

One important design constraint is that SAMRAI must enable new application development
and support new user-de�ned data types without forcing changes to the underlying
framework source code or recompilation of the libraries.

3 Design Patterns in SAMRAI

Design patterns are speci�c solutions to common, recurring software engineering problems.
Each pattern codi�es a general solution technique by providing a problem description, the
solution pattern, and a list of consequences resulting from the application of the pattern.
In practical terms, a design pattern describes a con�guration of a small set of objects whose
cooperative behavior solves a software design problem. There are several useful books that
describe design patterns [5, 8, 15]; our discussion follows that of Gamma et al. [8] most
closely.

We have found design patterns to be very helpful in solving some key design problems
that arose during the construction of the SAMRAI software architecture. Some of these
patterns are covered in detail in the following �ve sections. We begin each section with a
discussion of a design problem encountered in the SAMRAI framework. We then describe
the design pattern selected to solve that particular design problem and the consequences
of that decision.

Section 3.1 describes the Smart Pointer pattern which simpli�es the management of
dynamically allocated memory and provides safe dynamic type casting. The Singleton

pattern (Section 3.2) de�nes a single point of contact for objects shared among various
components. The Abstract Factory creational pattern (Section 3.3) enables SAMRAI
to support new user-de�ned patch data types without requiring modi�cations to the
framework. Finally, the Strategy (Section 3.4) and Chain of Responsibility (Section 3.5)
behavioral patterns are used in SAMRAI to decouple various framework components and
thus obtain greater reuse of fundamental algorithm pieces.

3.1 Smart Pointers

In this section, we describe two typical problems in the SAMRAI framework that are
solved through the use of Smart Pointer [7] techniques: (1) safe dynamic type casting and
(2) memory management for shared objects. The need for safe dynamic type casting is
illustrated by the following example. As described in Section 3.3, all SAMRAI patch data
types share a common base class called PatchData:

class PatchData : public ... {

void copy(const PatchData& source) = 0;

...

};

The concrete data types that are instantiated on SAMRAI patches|such as
CellData<double> or EmbeddedBoundaryData|inherit the signature for copy() declared
in PatchData. However, concrete classes often require the type of the copy() argument
to be the same as the class itself, not any arbitrary PatchData object. For example, it
would probably not make sense to copy EmbeddedBoundaryData into CellData<double>.
Unfortunately, there is no way to enforce this through the C++ type system at compile-
time. Although templates are often used in similar cases to ensure type safety, they are not
suÆcient for complex applications that must access data through abstract base classes.

Run-time type safety can be achieved through the use of run-time dynamic type
casting. In this case, dynamic type casting of the argument source within the copy()

4

implementation returns a pointer to the object if the cast is valid and returns NULL
otherwise. Although dynamic type-safe casting is part of the C++ standard, it is not yet
supported by all C++ compilers.

Another common problem solved through Smart Pointers is memory management for
shared objects. In this case, many framework objects maintain pointers to a shared object
instance that must be deallocated when all references to it disappear. Since ownership of
this shared object cannot be uniquely established, the application cannot easily determine
when to deallocate it. For example, SAMRAI patches typically share a pointer to a
patch descriptor object. Moreover, patches are created and destroyed dynamically during
mesh re�nement. The memory allocation problem is solved with reference counting smart
pointers that track the number of references to an object and then delete the pointed-to
object when the number of references decrements to zero.

3.1.1 Pattern Description The Smart Pointer pattern is a common C++ pattern [7]. It
consists of two parts: a templated Pointer class that manages the object reference counting
and a collection of classes that support run-time safe type casting. All pointed-to objects
are required to inherit from a common base class and provide a small number of functions
to implement the type conversions.

3.1.2 Consequences The use of the Smart Pointer pattern within SAMRAI has greatly
simpli�ed the management of dynamic memory allocation; multiple objects may share
pointers to the same object and the smart pointers guarantee that there will be no memory
leaks. The type-safe dynamic casting ensures that type errors will be caught at run-time.

The primary disadvantage of the Smart Pointer approach is that it introduces a common
base class for all pointed-to classes. While not a burden when writing new code, it is
esthetically unappealing to force otherwise unrelated classes to inherit from a common
base class, since it introduces extraneous coupling in the software architecture.

3.2 Singleton Classes

Some classes in the SAMRAI framework are intended to be instantiated only once, with
that single instance shared by various entities. For example, a VariableDatabase object
contains information about the variables used in a computational simulation (e.g., pressure,
density, or velocity). The database must be accessible to all algorithm components to
extract information about the variables and their roles in the simulation. Traditionally, such
shared objects were implemented using global variables; however, global variables do not
ensure only one instance of a class and they do not allow extension by subclassing. Instead,
we implement shared objects such as VariableDatabase using the Singleton creational
pattern as described in Gamma et al. [8]

3.2.1 Pattern Description The Singleton pattern ensures that a class will have only
one instance and provides global, well-de�ned access to that instance. Also, the class may
be extended through inheritance. Then, clients may use the subclass object without changes
to their code.

In SAMRAI, the VariableDatabase encapsulates its single instance and maintains
strict controls over access to this instance. It declares a getDatabase() static member
function that returns a pointer to the single database instance. In addition, the constructor
and destructor of the class are protected to ensure that only the database and its subclasses
may create an instance of the database.

5

Patch

Patch
Descriptor

PatchDataFactory

allocatePatchData()

ParticleDataFactory

allocatePatchData()

NodeDataFactory

allocatePatchData()

PatchData

copy(PatchData&);
packStream(…);

ParticleData

copy(PatchData&);
packStream(…);

NodeData

copy(PatchData&);
packStream(…);

Fig. 1. The Abstract Factory pattern manages the allocation of data for the SAMRAI patch

hierarchy. As illustrated by the dotted lines, subclasses of PatchData are created by associated

subclasses of PatchDataFactory. This diagram follows the OMT (Object Modeling Technique)

notation [8].

3.2.2 Consequences The Singleton pattern provides a more
exible alternative to the
use of global variables. The name space remains cleaner and applications may use extensions
of a basic singleton object, even at run-time. A singleton can be extended through standard
class derivation and any client can use the subclass without needing changes in its own code.

3.3 Abstract Factory

Recall that one of the primary considerations in the design of SAMRAI was the need to
support complex user-de�ned data on an SAMR patch hierarchy. Patches in an SAMR
application may contain data such as cell-centered arrays of doubles, node-centered arrays
of integers, or user-de�ned collections of particles among other types. Patch data types
are manipulated by the framework, which manages allocation, deallocation, copying, and
marshaling and unmarshaling of data for communication between processors.

We believe that SAMRAI users should not modify the framework software or recompile
the libraries to add new data types, as such practices violate sound software engineering
principles. Thus, the framework cannot know the concrete class types for user-de�ned patch
data, since these classes may be designed and implemented long after the framework has
been compiled. In this case, how can the framework allocate user-de�ned data? Clearly,
SAMRAI cannot execute new for concrete types that do not exist at compile-time. The
solution to this problem is the Abstract Factory creational pattern.

3.3.1 Pattern Description The Abstract Factory pattern describes an approach for
creating families of related objects without specifying their concrete classes [8]. This pattern
does so through two related inheritance hierarchies. The �rst hierarchy is rooted in an

6

abstract product class that declares the interface for all objects created by the pattern.
These product objects are created by factory objects in a second hierarchy.

Figure 1 shows how this pattern is implemented in the SAMRAI framework. The
SAMRAI Patch is a container class for all patch data types that exist in some rectangular
region of index space. All patch data types inherit from an abstract PatchData class and
de�ne a set of required routines such as copy() and packStream() (used for interprocessor
communication). Each Patch has a smart pointer to a PatchDescriptor that contains the
factory objects needed to make the concrete patch data. Then, to create an instance of
a PatchData object, the Patch consults the PatchDescriptor and asks the appropriate
PatchDataFactory to allocate a PatchData instance. The allocatePatchData() function
in the factory returns the concrete PatchData instance.

3.3.2 Consequences The Abstract Factory pattern separates concrete object creation
and declaration by encapsulating the responsibility for creating product objects. This
pattern enhances software
exibility and extensibility since concrete product classes (such
as NodeData in Figure 1) never appear in the framework code. Thus, new product classes
can be added after the framework has been compiled and archived into a library.

There are two drawbacks to Abstract Factory pattern. First, every new product class
requires the de�nition of two new classes|the product class and the factory class. Second,
some form of dynamic safe type casting is needed to obtain concrete class references.
For example, although it is suÆcient for the Patch container class to manipulate data
as abstract PatchData objects, user-de�ned numerical routines will need to extract data
from the patch and process that data using the concrete class interface. The cast from
abstract product to concrete product requires some form of run-time type checking such as
that described in Section 3.1.

3.4 The Strategy Pattern

SAMR applications involve sophisticated procedures that can be decomposed into smaller
constituent parts. These parts include algorithms for sequentially advancing a set of SAMR
patch levels, integrating single patch levels, dynamically changing the mesh, and numerical
routines de�ned on individual patches. A primary goal of SAMRAI is to provide a
exible
algorithmic framework that encapsulates components such as these so that they may be
reused in di�erent SAMR applications when appropriate.

Developing a
exible algorithmic framework is diÆcult. The most important research
challenge is discovering how complex algorithms may be factored into their constituent
parts. Then, the speci�c behavior of each component must be determined and appropriate
interfaces must be de�ned between the di�erent pieces. Ideally, each individual algorithmic
part may be replaced or enhanced without adversely in
uencing the behavior of the other
components. If this separation is attained, it becomes relatively easy to combine existing
software components to construct a complete SAMR algorithm. While we are still grappling
with these issues in the development of SAMRAI, we believe that the approach outlined
here demonstrates substantial progress.

The Strategy design pattern is the primary object-oriented design technique that
we use to encapsulate algorithmic units and de�ne reusable interfaces between software
components. Next, we illustrate our use of this pattern by describing the decomposition of
a standard SAMR algorithm into its primary components.

3.4.1 Pattern Description The intent of the Strategy pattern is to de�ne and
encapsulate families of algorithmic components to make them interchangeable through

7

HyperbolicIntegrator

initializeLevel()
advanceLevel(dt)
synchronizeLevelWithCoarser()

AnotherIntegrator

initializeLevel()
advanceLevel(dt)
synchronizeLevelWithCoarser()

TimeLevelIntegrator

initializeLevel()
advanceLevel(dt)
synchronizeLevelWithCoarser()

TimeSteppingAlgorithm

integrator->advanceLevel(dt)

Fig. 2. SAMRAI uses Strategy to de�ne a family of time-dependent integration algorithms.

common interfaces. Consequently, this pattern is well-suited to our concerns. A concise
example of the basic form of the Strategy pattern is illustrated in Figure 2.

In SAMRAI, a TimeSteppingAlgorithm class controls a sequence of timesteps that
advances the levels in an SAMR hierarchy. While this class is fairly general, the rou-
tines that advance data on the individual levels are speci�c to each application. When a
TimeSteppingAlgorithm object is created, it is con�gured with a suitable level integration
algorithm object. The level integration class may be supplied by the framework; for exam-
ple, the HyperbolicIntegrator class is provided for systems of hyperbolic conservation
laws. Otherwise, another integrator class must be implemented (e.g., AnotherIntegrator).
Each level integrator class is derived from the TimeLevelIntegrator abstract base class
and must satisfy the interface de�ned by that class. The TimeSteppingAlgorithm object
maintains a pointer to the abstract type; thus, it knows nothing of any speci�c, concrete
level integration process.

Figure 3 shows multiple Strategy patterns, including a particular instance of the
pattern in Figure 2, combined to form a complex algorithm from simpler components.
The con�guration represents a common SAMR algorithm for treating hydrodynamics
applications, such as the Euler equations of gas dynamics, with explicit timestepping [3, 4].

At the top algorithmic level, the TimeSteppingAlgorithm class controls
the overall SAMR scheme. It is con�gured with HyperbolicIntegrator and
RichardsonExtrapolation objects, which supply routines to advance the data and
dynamically adjust the mesh, respectively. Consistent with the Strategy pattern, the
timestepping algorithm knows only the abstract types TimeLevelIntegrator and
GriddingAlgorithm.

The Strategy pattern is repeated in the design of RichardsonExtrapolation and
HyperbolicIntegrator. Concrete subclasses of MeshGenerator and LoadBalancer (not
shown) provide routines that create box regions and load balance the patches on a
new patch level. The EulerPatchModel class supplies numerical routines for the Eu-
ler equations on a single patch in the mesh hierarchy. Both HyperbolicIntegrator

and RichardsonExtrapolation invoke functions in EulerPatchModel (e.g., numerical

ux computation, conservative di�erence, select cells for re�nement, etc.), but they
are independent of the speci�c routines. That is, the HyperbolicIntegrator has
a pointer to HyperbolicPatchModel and RichardsonExtrapolation has a pointer to
RichExtrapPatchModel. The EulerPatchModel class, derived from both of these abstract
base classes, implements functions declared in both of their interfaces.

8

TimeSteppingAlgorithm

RichardsonExtrapolation
TimeLevelIntegrator

advanceLevel(dt)

HyperbolicIntegrator

advanceLevel(dt)

findErrorCells()

GriddingAlgorithm

regridAllFinerLevels()

EulerPatchModel

RichExtrapPatchModel

findErrorCellsOnPatch()

HyperbolicPatchModel

computeFluxesOnPatch()
conservativeDiffOnPatch()

MeshGenerator

makeBoxes()

LoadBalancer

makeNewPatches()

problem-specific
numerical routines

Fig. 3. Multiple instances of the Strategy pattern are combined in SAMRAI to build a complex

AMR solution from simpler components.

3.4.2 Consequences The Strategy pattern provides a useful degree of algorithmic
encapsulation in SAMRAI. Using common interfaces to characterize families of related
algorithmic components, a system may be con�gured to perform a wide range of behaviors.
This type of \plug-and-play" interoperability is advantageous for several reasons. First,
it frees application programmers from unnecessary, redundant code implementation and
reduces development time. Second, it promotes the exploration of di�erent algorithmic
choices within a single application. Third, it increases software reuse within the framework,
which facilitates testing, maintenance, and extensibility of the architecture.

The encapsulation forced by the Strategy pattern is a valuable alternative to large,
overly-complex classes that can occur through the abuse of inheritance. For instance, the de-
sign in Figure 2 could have been implemented by inheriting from TimeSteppingAlgorithm

directly. The result would be several larger, more complicated classes that di�er in level
integration procedures, but have much timestepping code in common. Although decoupling
the algorithm components slightly increases function call overheads, the cost is negligible
at the high algorithmic level.

3.5 Chain of Responsibility

Data motion between SAMR hierarchy patches requires time interpolation, coarsening, and
re�nement operators that depend on problem geometry, the type of patch data, and the
centering of patch data. The SAMRAI parallel communication routines are de�ned in terms
of abstract operator and geometry base classes to decouple them from the details of the
particular geometry or concrete operators used in an application. The association between
a patch data type and its concrete operators is managed through the SAMRAI geometry
classes, which are responsible for cataloging the operators for a particular patch data type.

9

As users de�ne new patch data types for their applications, they must also provide the
required operators for these types. However, the geometry classes cannot know the concrete
types of these new operators, since they were de�ned after the compilation of the SAMRAI
framework. Thus, the geometry classes require an extensible lookup mechanism that allows
the de�nition of new operators for user-de�ned patch data types. This particular design
problem is solved by the Chain of Responsibility design pattern.

3.5.1 Pattern Description The Chain of Responsibility pattern avoids coupling the
sender of a request to any potential request receiver by giving multiple object handlers an
opportunity to handle the request. Our implementation of this pattern follows Gamma [8].

To obtain operators, an algorithm object queries a geometry object for the operators
associated with various patch data types. The geometry object passes each request to
the chain of handlers it owns. The request is forwarded along the chain until the correct
operator handler is found. This handler then returns a pointer to the desired operator.
The correct operator handler is found when the patch data type of the request matches the
patch data type of the handler, where the type equality is determined using the dynamic
casting facilities described in Section 3.1.

3.5.2 Consequences There are several advantages to using the Chain of Responsibility

pattern for the operator lookup. First, this pattern reduces the coupling between patch
data types, operators, and the algorithms that use them since these objects have no explicit
knowledge of each other's concrete types. The same mechanism may be used for arbitrary
patch data types and operators without changing any of the algorithm code. Second, the
system is suÆciently
exible so that new concrete operator handlers (thus, new operators)
may be added to the chain at run time. In particular, there is no need to use conditional
statements or enumerated types that cannot be extended without recompilation. Third,
the use of the dynamic cast mechanism ensures type safety. That is, an operator cannot
be associated with a patch data type if the patch data type is not of the type supported
by the operator handler.

A disadvantage of the Chain of Responsibility pattern is that it requires the implementa-
tion of an operator class and hander class for each concrete operation. The potentially-large
number of classes may be reduced by bundling operators together within larger classes and
using conditionals to choose the correct behavior. However, the overall amount of source
code required in either case is about the same. In most applications, each chain is tra-
versed only once for each variable. Once an operator is found and a pointer to its instance
is returned, the operator may be called directly through the pointer. No future use of the
chain is required. We believe that the general
exibility that we achieve using the chain
mechanism far outweighs the drawbacks for our framework.

4 Summary and Conclusions

Object-oriented design patterns have been very useful in the design and development of the
SAMRAI structured adaptive mesh re�nement software architecture. By using patterns
such as Abstract Factory, Strategy, and Chain of Responsibility, we have simpli�ed the
management of complex SAMR algorithms. Consequently, design patterns have enabled us
meet two of our most important design goals:
exible, extensible algorithm support for a
wide range of SAMR applications, and generic support for arbitrary patch data types.

When considering the adoption of object-oriented techniques, the scienti�c computing
community has often focused on implementation and performance issues associated with
\low-level" classes such as vectors, matrices, arrays, and C++ STL containers. While these

10

abstractions are useful, we feel that object-oriented design o�ers the most bene�t at the
higher levels of a numerical software architecture. Object-oriented techniques enable the
decomposition of complex algorithms into smaller, more manageable pieces that are suitable
for a variety of applications. They promote code and algorithm reuse and also facilitate
testing and management of software framework components. Most importantly, object-
oriented patterns support more productive application construction by allowing rapid
exploration of new algorithms that are built from both existing and new components.

References

[1] M. Aftosmis, M. Berger, and J. Melton, Adaptation and surface modeling for cartesian mesh
methods, in Proceedings of the 12th AIAA Computational Fluid Dynamics Conference, San
Diego, CA, June, 1995, 1995. AIAA Paper 95-1725.

[2] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A conservative adaptive
projection method for the variable density incompressible navier-stokes equations, Tech. Rep.
LBNL-39075, Lawrence Berkeley National Laboratory, Berkeley, CA, 1996.

[3] M. J. Berger and P. Colella, Local adaptive mesh re�nement for shock hydrodynamics, Journal
of Computational Physics, 82 (1989), pp. 64{84.

[4] M. J. Berger and J. Oliger, Adaptive mesh re�nement for hyperbolic partial di�erential
equations, Journal of Computational Physics, 53 (1984), pp. 484{512.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, A System of Patterns,
John Wiley and Sons, New York, NY, 1996.

[6] P. Colella, M. Dorr, and D. Wake, Numerical simulation of plasma
uid equations using
locally re�ned grids, Tech. Rep. UCRL-JC-129913, Lawrence Livermore National Laboratory,
Livermore, CA, 1998. submitted to J. Comp. Phys.

[7] J. Coplien, Advanced C++: Programming Styles and Idioms, Addison-Wesley Publishing Co.,
Menlo Park, CA, 1992.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of reusable
Object-Oriented Software, Addison-Wesley Publishing Co., Menlo Park, CA, 1995.

[9] F. X. Garaizar and J. A. Trangenstein, Adaptive mesh re�nement and front tracking for shear
bands in an antiplane shear model. to appear in SIAM Journal on Scienti�c Computing, 1998.

[10] R. D. Hornung and J. A. Trangenstein, Adaptive mesh re�nement and multilevel iteration for

ow in porous media, Journal of Computational Physics, 136 (1997), pp. 522{545.

[11] J. P. Jessee, L. H. Howell, W. A. Fieveland, P. Colella, and R. B. Pember, An adaptive mesh
re�nement algorithm for the discrete ordinates method, in Proceedings of the 1996 National
Heat Transfer Conference, Houston, TX, August 3-6, 1996, 1996.

[12] R. I. Klein, J. B. Bell, R. B. Pember, and T. Kelleher, Three dimensional hydrodynamic
calculations with adaptive mesh re�nement of the evolution of rayleigh taylor and richtmyer
meshkov instabilities in converging geometry: Multi-mode perturbations, in Proceedings of the
4th International Workshop on Physics of Compressible Turbulent Mixing, 1993.

[13] S. Kohn, J. Weare, E. Ong, and S. Baden, Software abstractions and computational issues in
parallel structured adaptive mesh methods for electronic structure calculations, in Proceedings
of the Workshop on Structured Adaptive Mesh Re�nement Grid Methods, Minneapolis, MN,
March 1997, Springer-Verlag.

[14] J. A. Trangenstein, Adaptive mesh re�nement for wave propagation in nonlinear solids, SIAM
J. Sci. Stat. Comput., 16 (1995), pp. 819{839.

[15] J. Vlissides, Pattern Hatching: Design Patterns Applied, Addison-Wesley Publishing Co.,
Menlo Park, CA, 1998. Software Patterns Series.

